A Network Clustering based Software Attribute Selection for Identifying Fault-Prone Modules

ICITCS 15'

Software fault prediction

How to measure the software quality?

• Static code analysis

How to detect the software fault?

- Poor design
- Structural problems

Complexity measures

Module-based software complexity measures

- Graph-theoretic complexity
- The more complicated software

Based on the number of operators and operands
The software is harder to read or understand error-prone

Complexity measures

Feature	Description	Feature	Description
total loc	The total lines of code	unique operands(n ₂)	The number of unique operands
blank loc	Lines of blanks	unique operators (n_1)	The number of unique operators
comment loc	Lines of comments	total operands(N_2)	The number of operands
code and comment loc	Lines of code and comments	total operators(N ₂)	The number of operators
executable loc	The executable source lines of code		
branch count	Branch count of the flow graph	halstead vocabulary(n)	The length of unique operands and operat
decision count	Decision count		ors $(n_1 + n_2)$
call pairs	Executable call pairs between modules	halstead length(N)	The length of operands and operators ($N_1 + N_2$)
condition count	Condition count		
multiple condition count	Multiple condition count	halstead volume(V)	The measure of complexity (N $* \log_2 n$)
cyclomatic complexity	Cyclomatic complexity		The implementation level of the program
cyclomatic density	Cyclomatic density (cyclomatic complexity divided by the lines of code)	halstead level(L)	$\left(\frac{2*n_2}{n_1*N_2}\right)$
decision density	Decision density (condition decision metric divided b y the decision count)	halstead difficulty(D)	The measure of difficulty $(\frac{n_1}{2} * \frac{N_2}{n_2})$
design complexity	Design complexity (the number of paths which calls s omething in the control flow)	halstead effort(EFF)	The efforts required to understand or impl ement the program (D * V)
design density	Design density (design complexity divided by cyclom atic complexity)	halstead error(ERR)	The estimated number of errors in the im plementation (V/3000)
normalized cyclomatic complexity	Normalized cyclomatic complexity	halstead time(T)	The time required to understand or imple
formal parameters	The number of formal parameters		

Complexity measures

total loc	The total lines of code	unique operands(n ₂)	The number of unique operands
blank loc	Lines of blanks	unique operators(n ₁)	The number of unique operators
comment loc	Lines of comments	total operands(N_2)	The number of operands
code and comment loc	Lines of code and comments	total operators (N_4)	The number of operators
executable loc	The executable source lines of code		The length of unique operands and operat
branch count	Branch count of the flow graph		
decision count	Nood to coloct come highly or	predated foatu	
call pairs	Need to select some mighty correlated realtires gth of operands and operators		
condition count	with the software defect		
multiple condition count	with the solution defect		
	& ,		
cyclomatic complexity	Q		lementation level of the program
cyclomatic density	Remove some redunda	nt features	
		int reactines	n N
decision density	y the decision count)	halstead difficulty(D)	The measure of difficulty $\left(\frac{n_1}{2} * \frac{n_2}{n_2}\right)$
design complexity	Design complexity (the number of paths which calls s	halstead effort(EFF)	The efforts required to understand or impl
	omething in the control flow)		ement the program (D * V)
dosign donsity	Design density (design complexity divided by cyclom	halstand arrar(EPD)	The estimated number of errors in the im
	atic complexity)		plementation (V/3000)
normalized cyclomatic com	olexity Normalized cyclomatic complexity	halstead time(T)	The time required to understand or imple
formal parameters	The number of formal parameters		ment the program (EFF/18)

Dataset

PROMISE Software Engineering Repository data set

- SoftLab data a Turkish white-goods manufacturer Embedded software implemented in C
- Measured by McCabe & Halstead metrics
- 428 modules(observation), 29 features(predictor)
- Binary response defective(1) / defect-free(0)

Feature network

To measure the correlation between features

MIC(Maximal Information Coefficient) feature network construction

- A measure of the strength of the linear or non-linear association between two variables X and Y
- Binning scheme apply mutual information on continuous random variables
- Mutual information between x and y

I(x,y) = H(x) + H(y) - H(x,y)

• Try all the possible binnings and pick the maximum

$$MIC(x, y) = max(\frac{I(x, y)}{log_2 min(n_x, n_y)})$$

F-score(Fisher score) based feature selection

• Fisher score of i-th feature

$$F(i) = \frac{\left(\overline{x_i}^{(+)} - \overline{x_i}\right)^2 + \left(\overline{x_i}^{(-)} - \overline{x_i}\right)^2}{\frac{1}{n_+ - 1}\sum_{k=1}^{n_+} \left(x_{k,i}^{(+)} - \overline{x_i}^{(+)}\right)^2 + \frac{1}{n_- - 1}\sum_{k=1}^{n_-} \left(x_{k,i}^{(-)} - \overline{x_i}^{(-)}\right)^2}$$

 n_{+} , n_{-} : the positive and negative instances, $\overline{x_{i}}, \overline{x_{i}}^{(+)}, \overline{x_{i}}^{(-)}$: the average of the *i*-th feature of the whole, positive, and negative data sets, $x_{k,i}^{(+)}, x_{k,i}^{(-)}$: the *i*-th feature of the *k*-th positive/negative instance.

- Measures the discrimination of the feature
- Automatically finds the feature subset with high discrimination
- Don't reveal the mutual information between features

k-means clustering

- Given the p-by-n data matrix (p predictors, n modules),
- Select k mutually exclusive clusters from p predictors
- The standard k-means algorithm, Lloyd's algorithm & k-means++ algorithm for the centroid initialization

Spectral clustering

- Standard graph cut algorithm
- Uses the spectrum(eigenvalues) of the graph for dimensionality reduction before clustering
- The normalized cuts algorithm
- The affinity matrix

$$W = e^{\left(-\frac{G}{2*\sigma^2}\right)}$$
 σ : scaling parameter

 The graph is clustered using eigenvectors with the second smallest eigenvalue solving the symmetric normalized laplacian matrix

$$D^{-\frac{1}{2}}(D-W)D^{-\frac{1}{2}}x = \lambda x$$
 x: eigenvectors, λ : eigenvalue

Hierarchical clustering

- Construct clusters from the agglomerative hierarchical cluster tree
- To encode the hierarchical cluster tree, linkage methods are used
 - average = centroid = weighted average > Ward's method
- k clusters are obtained by cutting off the hierarchical tree at the smallest height

Given network or data matrix,

- Cluster into 3 feature groups,
- Select 3 features which have the highest value of averaged edge weights within each cluster

Fault classification

SVM classification

- The prediction model is trained with the selected features
- Kernel : linear > polynomial, RBF, sigmoid

Defect prediction on validation set

- Perform 5-fold cross validation
 - determine optimal parameter, avoid over-fitting to the training data
- 80% (≈ 342) for training, 20% (≈ 85) for test
- Evaluate the performance with the averaged 5-fold cross validation accuracy

Averaged 5-fold cross validation accuracy comparison

Method	Cross Validation Accuracy
Whole	78.27%
FFS	86.21%
K-means	85.75%
Spectral	87.85%
Hierarchical	86.68%

Feature	Description	Feature	Description
total loc	The total lines of code	unique operands(n ₂)	The number of unique operands
blank loc	Lines of blanks	unique operators (n_1)	The number of unique operators
comment loc	Lines of commonts	total operands(N ₂)	The number of operands
code and comment loc	Lines F-score based feature selection	total operators (N_1)	The number of operators
executable loc	The executable source miles of code		
branch count	Branch count of the flow graph	halstead vocabulary(n)	The length of unique operands and operat
decision count	Decision count		ors $(n_1 + n_2)$
call pairs	Executable call pairs between modules	halstead length(N)	The length of operands and operators ($N_1 + N_2$)
condition count	Condition count		N1 + N2)
multiple condition count	Multiple condition count	halstead volume(V)	The measure of complexity (N $* \log_2 n$)
cyclomatic complexity	Cyclomatic complexity		The implementation level of the program
cyclomatic density	Cyclomatic density (cyc <mark>K-means clustering</mark> the lines of code)	halstead level(L)	$\left(\frac{2*n_2}{n_1*N_2}\right)$
decision density	Decision density (condition decision metric divided b y the decision count)	halstead difficulty(D)	The measure of difficulty $(\frac{n_1}{2} * \frac{N_2}{n_2})$
design complexity	Design complexity (the number of paths which calls s omething in the control flow)	halstead effort(EFF)	The efforts required to understand or impl ement the program (D * V)
design density	Design density (design complexity divided by cyclom atic complexity)	halstead error(ERR)	The estimated number of errors in the im plementation (V/3000)
normalized cyclomatic complexity	Normalized cyclomatic complexity	halstead time(T)	The time required to understand or imple
formal parameters	The number of formal parameters		ment the program (EFF/18)

Feature	Description	Feature	Description
total loc	The total lines of code	unique operands(n ₂)	The number of unique operands
blank loc	Lines of blanks Spectral clustering	unique operators(n ₁)	The number of unique operators
comment loc	Lines of commence	total operands(N ₂)	The number of operands
code and comment loc	Lines of code and comments	total operators(N ₄)	The number of operators
executable loc	The executable source lines of code		
branch count	Branch count of the flow graph	halstead vocabulary(n)	The length of unique operands and operat
decision count	Decision count		ors $(n_1 + n_2)$
call pairs	Executable call pairs between modules	halstead length(N)	The length of operands and operators ($N_1 + N_2$)
condition count	Condition count		
multiple condition count	Multiple condition count	halstead volume(V)	The measure of complexity (N $* \log_2 n$)
cyclomatic complexity	Cyclomatic complexity		The implementation level of the program
cyclomatic density	Cyclomatic Hierarchical clustering	halstead level(L)	$\left(\frac{2*n_2}{n_1*N_2}\right)$
decision density	Decision density (condition decision metric divided b y the decision count)	halstead difficulty(D)	The measure of difficulty $(\frac{n_1}{2} * \frac{N_2}{n_2})$
design complexity	Design complexity (the number of paths which calls s omething in the control flow)	halstead effort(EFF)	The efforts required to understand or impl ement the program (D * V)
design density	Design density (design complexity divided by cyclom atic complexity)	halstead error(ERR)	The estimated number of errors in the im plementation (V/3000)
normalized cyclomatic complexity	Normalized cyclomatic complexity	halstead time(T)	The time required to understand or imple
formal parameters	The number of formal parameters		ment the program (EFF/ 10)

Thanks !

Q & A